• “Bulk Nanostructured Materials”, Edited by Michael J.Zehtbauer, Yuntian T.Zhu, Wiley-VCH, Weinheim (2009)
  • Science, 312-5771(2006), pp.249-251.
  • Science, 298(2002), pp.807-811.
  • Science, 320-5879(2008), pp.1057-1060.
  • Nature, 419 (2002), 912.
  • Science, 300 (2003), 1275.
  • Science, 299 (2003), 686.
  • Science, 304 (2004), 422


[1] “Bulk Nanostructured Materials”, Edited by Michael J.Zehtbauer, Yuntian T.Zhu, Wiley-VCH, Weinheim (2009)

[2] “Enhanced Structural Refinement by Combining Phase Transformation and Plastic Deformation in Steels”,
    N.Tsuji and T.Maki: Scripta Mater., 60-12(2009), pp.1044-1049.

[3]     “A New Route to Fabricate Ultrafine Grained Structures in Carbon Steels without Severe Plastic Deformation”,
    Y.Okitsu, N.Takata and N.Tsuji: Scripta Mater., 60-2(2009), pp.76-79.

[4]    “Unique Mechanical Properties of Nano-Structured Metals”,
    N.Tsuji: J. of Nanoscience and Nanotechnology, 7-11(2007), pp.3765-3770.

[5]    “Hardening by Annealing and Softening by Deformation in Nanostructured Metals”,
    X.Huang, N.Hansen and N.Tsuji: Science, 312-5771(2006), pp.249-251.

[6]    “Elongation Increase in Ultra-Fine Grained Al-Fe-Si Alloy Sheets”,
    H.W.Kim, S.B.Kang, N.Tsuji and Y.Minamino: Acta Mater., 53-6(2005), pp.1737-1749.

[7]    “Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing”,
    N.Tsuji, Y.Ito, Y.Saito and Y.Minamino: Scripta Mater., 47-12(2002), pp.893-899.

[8]     “Novel Ultra-High Straining Process for Bulk Materials  -Development of the Accumulative Roll-Bonding (ARB) Process-”
    Y.Saito, H.Utsunomiya, N.Tsuji and T.Sakai: Acta Mater., 47(1999), pp.579-583.

[9]    “Bimodally grained high strength Fe fabricated by mechanical alloying and spark plasma sintering”, B. Srinivasarao, K. Oh-ishi, T. Ohkubo, K. Hono: Acta Mater. 57(2009), pp.3277-3286.

[10]    “3D atom probe analysis of Fe-B based nanocrystalline soft magnetic materials”, Y. M. Chen, T. Ohkubo, M. Ohta, Y. Yoshizawa, and K. Hono: Acta Mater. 57(2009), pp.4463-4472.

[11]    “Complementary use of TEM and APT for the investigation of steels nanostructured by severe plastic deformation”, X. Sauvage, W. Lefebvre, C. Genevois, S. Ohsaki and K. Hono: Scripta Materialia, 60(2009), pp.1056-1061.

[12]    “Bulk mechanical alloying of Cu-Ag and Cu/Zr two phase microstructures by accumulative roll bonding process”, S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, and K. Hono: Acta Mater. 55(2007), pp.2885-2895.

[13]     “The dynamic phase transformation and formation of nanocrystalline structure in SUS304 austenitic stainless steel subjected to high pressure torsion”, J.G.Li, M.Umemoto, Y.Todaka, K.Fujisaku,  K.Tsuchiya: Reviews on Advanced Materials Science, 18(2008), pp.577-582.

[14]     “Bulk submicrocrystalline ω-Ti produced by high-pressure torsion .straining”, Y.Todaka, J.Sasaki, T.Moto, M.Umemoto: Scripta Materialia, 59(2008), pp.615-618.

[15]     “The microstructure investigation on the surface of drilled hole in carbon steels”, J.G.Li, M.Umemoto, Y.Todaka, K.Tsuchiya: Acta Materialia, 55(2007), pp.1397-1406.

[16]     “Role of strain gradient on grain refinement by severe plastic deformation”, Y.Todaka, M.Umemoto, J.Yin, Z.Liu, K.Tsuchiya: Materials Science and Engineering A, 462(2007), pp.264-268.

[17]    “Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure”, R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, K. Kunishige: Scripta Materialia, 59(2008), pp.963-966.

[18]     “Effect of Strain on ‘Hardening by Annealing and Softening by Deformation’ Phenomena in Ultrafine Grained Aluminum”, D.Terada, H.Houda and N.Tsuji: J. Mater. Sci., (UFG V), 43-23-24(2008), pp.7331-7337.

[19]     “Microstructure Quantification and Correlation with Flow Stress of Ultrafine Grained Commercially Pure Al Fabricated by Equal Channel Angular Pressing (ECAP)”, M. Reihanian, R. Ebrahimi, M.M. Moshksar, D. Terada, N. Tsuji: Mater. Charact., 59(2008), pp.1312-1323.

[20]     “Change in Mechanical Properties and Microstructure of ARB Processed Ti during Annealing”, D.Terada, M.Inoue, H.Kitahara and N.Tsuji: Mater. Trans., 49-1(2008), pp.41-46.

[21]     “Microstructure and Mechanical Properties of Commercial Purity Titanium Severely Deformed by ARB Process”, D.Terada, S.Inoue and N.Tsuji: J. Mater. Sci., 42-5(2007), pp.1673-1681.

[22]    “Mechanics of Ultra-Strength Materials”, T. Zhu, J. Li, S. Ogata, S. Yip: MRS Bulletin, 34(2009), pp.167-172.

[23]    “Ideal Pure Shear Strength of Aluminum and Copper”, S. Ogata, J. Li, S. Yip: Science, 298(2002), pp.807-811.

[24]    “Weakening of Aluminum Grain Boundary Induced by Sulfur Segregation: A First-Principles Computational Tensile Test”, Y. Zhang, G-H. Lu, S. Deng, T. Wang, H. Xu, M. Kohyama, R. Yamamoto: Physical Review B, 75(2007), 172101.

[25]    “Using ring samples to evaluate the processing characteristics in high-pressure torsion”, Y. Harai, K. Edalati, Z. Horita and T. G. Langdon: Acta Materialia, 57 (2009), pp.1147-1153.

[26]    “Effect of hydrogen on martensite formation in austenitic stainless steels in high pressure torsion”, Y. Mine, Z. Horita and Y. Murakami: Acta Materialia, 57, (2009), pp.2993-3002.

[27]    “Processing Pure Ti by High-Pressure Torsion in Wide Range of Pressures”, K. Edalati, E. Matsubara and Z. Horita: Metallurgical and Materials Transactions A, 40(2009), pp.2079-2086.

[28]    “The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion”, C. Xu, Z. Horita and T. G. Langdon: Acta Materialia, 56(2008), pp.5168–5176.

[29]    “High Pressure Torsion Using Ring Specimens”, Y. Harai, Y.Ito and Z. Horita: Scripta Materialia, 58(2008), pp.469-482.

[30]    “The process of grain refinement in equal-channel angular pressing”, Y.Iwahashi, Z. Horita, M.Nemoto and T.G.Langdon: Acta Mater., 46(1998), pp.3317-3331.

[31]    “The shearing characteristics associated with equal-channel angular pressing”, M.Furukawa, Y.Iwahashi, Z.Horita, M.Nemoto and T.G.Langdon: Mater. Sci. Eng. A, 257(1998), pp.328-332.

[32]    “An Investigation of Microstructural Evolution during Equal-Channel Angular Pressing”, Y.Iwahashi, Z. Horita, M.Nemoto and T.G.Langdon: Acta Mater., 45(1997), pp.4733-4741. 

[33]    “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials”, Y.Iwahashi, J.Wang, Z.Horita, M.Nemoto and T.G.Langdon: Scripta Mater. 35(1996), pp.143-146. 

[34]    “Production of of TiNi Amorphous/Nanocrystalline Wires with High Strength and Elastic Modulus by Severe Cold Drawing”, K. Tsuchiya, Y. Hada, M. Ohnuma, K. Nakajima, T. Koike, Y. Todaka and M. Umemoto: Scripta Materialia, 60(2009), pp.749-752.

[35]     “Martensitic Transformation in Nanostructured TiNi formed via Severe Plastic Deformation”, K. Tsuchiya, M. Inuzuka, D. Tomus, A. Hosokawa, H. Nakayama, K. Morii, Y. Todaka and M. Umemoto: Mater. Sci. Eng., A, 438-440(2006), pp.643-648.

[36]    “Enhanced Mechanical Properties of Nano/Meso Hybrid Structure Materials Produced by Hot Roll Sintering Process”, H.Fujiwara, R.Akada, A.Noro, Y.Toshita and K.Ameyama: Mater.Transactions, 49(2008), pp.90-96.

[37]     “Nano Grain Formation in Tungsten by Sevre Plastic Deformation-Mechanical Milling Proces”, E.Oda, H.Fujiwara and K.Ameyama: Materials Transactions, 49-1(2008), pp.54-57.

[38]     “Micro-Structures of TiC/Ti5Si3 Composite Produced by Powder Metallurgy and LIGA Process”, N.Miyano, H. Iwasa, M. Matsumoto, K.Ameyama, S. Sugiyama: J. of Microsystems Technologies,11(2005), pp.374-378.

[39]        “Tensile Strength of Electrodeposited Nanocrystalline Ni-W Alloys with Finely Dispersed Micrometer sized Array Through-Holes”, T. Yamasaki, N. Oda, H. Matsuoka and T. Fukami: Materials Sci. & Eng. A, 449-451(2007), pp.833-835.

[40]         “High-strength Nanocrystalline Ni-W Alloys Produced by Electrodeposition and Their Embrittlement Behaviors During Grain Growth”, T. Yamasaki: Scripta Materialia, 44(2001), pp.1497-1502.

[41]   “Formation of Amorphous Electrodeposited Ni-W Alloys and Their Nanocrystallization”, T. Yamasaki, P. Schlossmacher, K. Ehrlich and Y. Ogino: NanoStructured Materials, 10(1998), pp.375-388.

[42]     “Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475”, T.Sakai, H.Miura, A.Goloborodko, O.Sitdikov: Acta Mater., 57(2009), pp.153-162.

[43]     “Grain refinement in coarse-grained 7475 Al alloy during severe hot forging”, O.Sitdikov, T.Sakai, A.Goloborodoko, H.Miura and R.Kaibyshev: Philo. Mag., 85(2005), pp.1159-1175.

[44]     “Control of Ultrafine Microstructure by Single-pass Heavy Deformation and Cold Forging of Metal”, J. Yanagimoto, S. Sugiyama, A. Yanagida, N. Iwamura and M. Ishizuka: Journal of Materials Processing Technology, 209-2(2009), pp.679-685.

[45]   “Severe plastic deformation (SPD) processes for metals”, A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida: CIRP Annals - Manufacturing Technology, 57-2(2008), pp.716-735.

[46]     “Single-pass Severe Plastic Forming of Ultrafine-grained Plain carbon Steel”, K. Nagato, S. Sugiyama, A. Yanagida and J. Yanagimoto: Materials Science and Engineering A, 476(2008), pp.376-383.

[47]      “Combined Macro-Micro Modeling for Rolling Force and Microstructure Evolution to Produce Fine Grain Hot Strip in Tandem Hot Strip Rolling”,T. Morimoto, I. Chikushi and J. Yanagimoto: ISIJ International, 47-10(2007), pp.1475-1484.

[48]     “Quantification of strain in accumulative roll-bonding under unlubricated condition by finite element analysis”, T.Inoue, N.Tsuji: Computational Materials Science, 46-1(2009), pp.261-266.

[49]     “Effect of initial grain sizes on hardness variation and strain distribution of pure aluminum severely deformed by compression tests”, T.Inoue, Z.Horita, H.Somekawa, K.Ogawa: Acta Materialia, 56(2008), pp.6291-6303.

[50]     “Inverse Temperature Dependence of Toughness in an Ultrafine Grain Structure Steel”, Y.Kimura, T.Inoue, F.Yin, K.Tsuzaki: Science, 320-5879(2008), pp.1057-1060.

[51]     “Strain distribution and microstructural evolution in multi-pass warm caliber rolling”, T.Inoue, F.Yin and Y.Kimura: Materials Science and Engineering A, 466(2007), pp.114-122.

[52]    “Effect of Ferrite Grain Size on Tensile Deformation Behavior of a Ferrite-Cementite Low Carbon Steel”, N.Tsuchida, H.Masuda, Y.Harada, K.Fukaura, Y.Tomota and K.Nagai: Mater. Sci. and Eng. A, 488(2008), pp. 446-452.

[53]     “Tensile Behavior of Fine-Grained Steels”, Y.Tomota, A.Narui, and N.Tsuchida: ISIJ Int., 48(2008), pp.1107-1113.

[54]     “Tensile Properties and Twinning Behavior of High Manganese Austenitic Steel with Fine-Grained Structure”, R.Ueji, N.Tsuchida, D.Terada, N.Tsuji, Y.Tanaka, A.Takemura and K.Kunishige: Scripta Mater., 59(2008), pp.963-966.

[55]    “Thermally activated dislocation depinning at a grain boundary in nanocrystalline and ultrafine-grained materials”, M. Kato: Materials Science and Engineering A, 516(2009), pp.276-282.

[56]    “Formation of a wear-induced layer with nanocrystalline structure in Al-Al3Ti functionally graded material”, H. Sato, T. Murase, T. Fujii, S. Onaka, Y. Watanabe and M. Kato: Acta Materialia, 56(2008), pp.4549-4558.

[57]      “A Dislocation Bow-Out Model for Yield Stress of Ultra-Fine Grained Crystals”, M. Kato, T. Fujii and S. Onaka: Materials Transactions, 49-6(2008), pp.1278-1283.

[58]     “Tensile Behavior of Fine-Grained Steels”, Y.Tomota, A.Narui and N.Tsuchida: ISIJ Int., 48(2008), pp.1107-1112.

[59]     “Strength and deformation behavior of bulky cementite synthesized by mechanical milling and plasma-sintering”, T.Terashima, Y.Tomota, M.Isaka, T.Suzuki, M.Umemoto and Y.Todaka: Scripta Mater., 54(2006), pp.1925-1929.

[60]     “In situ neutron Diffraction under tensile loading for heavily drawn steel wires with ultra-high strength”, Y.Tomota, T.Suzuki, A.Kanie, Y.Shiota, M.Uno, A.Moriai, N.Minakawa and Y.Morii: Acta mater., 53(2005), pp.463–467.

[61]     “Formation of Deformation Twins and Related Shear Bands in a Copper Single Crystal Deformed by Equal-Channel Angular Pressing for One Pass at Room Temperature”, H. Miyamoto, A. Vinogradov, S. Hashimoto, et al.: Materials Transactions, 50-8(2009), pp.1924-1929.

[62]     “On the role of dislocation hardening in the monotonic and cyclic strength of severely plastically deformed metals”, A. Vinogradov, M. Maruyama, S. Hashimoto: Scripta Materialia, 61-8(2009), pp.817-820.

[63]     “Nanostructure formation in the surface layer of metals under influence of high-power electric current pulse”, A. Vinogradov, A. Mozgovoi, S. Lazarev, et al.: Journal of Materials Science, 40-17(2009), pp.4546-4552.

[64]     “Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation”, A. Vinogradov: Journal of Materials Science, 42-5(2007), pp.1797-1808.

[65]     “Strengthening mechanisms in nanostructured high purity aluminium deformed to high strain and annealed”, N.Kamikawa, X.Huang, N.Tsuji and N.Hansen: Acta Materialia, 57(2009), pp.4198-4208.

[66]     “Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel”, N.Kamikawa, T.Sakai and N.Tsuji: Acta Materialia, 55(2007), pp.5873-5888.

[67]     “Through-thickness characterization of microstructure and texture in high purity aluminum processed to high strain by accumulative roll-bonding”, N.Kamikawa, N.Tsuji, X.Huang and N.Hansen: Materials Transactions, 48(2007), pp.1978-1985.

[68]     “Quantification of annealed microstructures in ARB processed aluminum”, N.Kamikawa, N.Tsuji, X.Huang and N.Hansen: Acta Materialia, 54(2006), pp.3055-3066.

[69]     “Effect of Extrinsic Grain Boundary Dislocations on Mechanical Properties of Ultrafine-Grained Metals by Molecular Dynamics Simulations”, T. Shimokawa, T. Hiramoto, T. Kinari and S. Shintaku: Mater. Trans.,50(2009), pp.2-10.

[70]    “Atomic simulations on the grain subdivision of a crystalline metal”, T. Shimokawa, T. Kinari and S. Shintaku: Materials Science Forum, 561-565(2007), pp.1983-1986.

[71]     “Interaction mechanism between edge dislocations and asymmetrical tilt grain boundaries investigated via quasicontinuum simulations”, T. Shimokawa, T. Kinari and S. Shintaku: Physical Review B, 75(2007), 144108(1-11).

[72]     “Collective grain deformation of nanocrystalline metals by molecular dynamics simulations”, T. Shimokawa, T. Kinari, S. Shintaku and A. Nakatani: Modelling and Simulation in Materials Science and Engineering, 14(2006), pp.S63-S72.

[73]     “Defect-induced anisotropy in mechanical properties of nanocrystalline metals by molecular dynamics simulations”, T. Shimokawa, T. Kinari, S. Shintaku, A. Nakatani and H. Kitagawa: Modelling and Simulation in Materials Science and Engineering, 13(2005), pp.1217-1231.

[74]     “Grain-size dependence of the relationship between intergranular and intragranular deformation of nanocrystalline Al by molecular dynamics simulations”, T. Shimokawa, A. Nakatani and H. Kitagawa: Phys. Rev.B, 71(2005), 224110(1-8).

[75]     “Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region”, T. Shimokawa, J. J. Mortensen, J. Schiøtz and K. W. Jacobsen: Physical Review B, 69-21(2004), 214104(1-10).

[76]     “Multiscale Crystal Plasticity Simulation with Pseudo-Three-Dimensional Model on Ultrafine-Graining Based on Evolution of Dislocation Structures”, Y. Aoyagi, N. Horibe and K. Shizawa: Mater. Sci. Forum, 584-586(2008),p. 1057-1062.

[77]     “Multiscale Crystal Plasticity Modeling Based on Geometrically Necessary Crystal Defects and Simulation on Fine-Graining for Polycrystal”, Y. Aoyagi and K. Shizawa: Int. J. of Plasticity, 23-6(2007), pp.1022-1040.

to pagetop